A multiprotein complex (or protein complex) is a group of two or more associated polypeptide chains. If the different polypeptide chains contain different protein domain, the resulting multiprotein complex can have multiple catalytic functions. This is distinct from a multienzyme polypeptide, in which multiple catalytic domains are found in a single polypeptide chain. Protein complexes are a form of quaternary structure. Proteins in a protein complex are linked by non-covalent protein–protein interactions, and different protein complexes have different degrees of stability over time. These complexes are a cornerstone of many (if not most) biological processes and together they form various types of molecular machinery that perform a vast array of biological functions. Increasingly, scientists view the cell as composed of modular supramolecular complexes, each of which performs an independent, discrete biological function. Through proximity, the speed and selectivity of binding interactions between enzymatic complex and substrates can be vastly improved, leading to higher cellular efficiency. Unfortunately, many of the techniques used to break open cells and isolate proteins are inherently disruptive to such large complexes, so their protein complexes within the cell may be even more widespread than can be detected. Examples include the proteasome for molecular degradation, the metabolon for oxidative energy generation, and the ribosome for protein synthesis. In stable complexes, large hydrophobic interfaces between proteins typically bury surface areas larger than 2500 square angstroms.